摘要: |
强降水常常引发洪涝灾害,因此提高雷达定量降水估测(QPE)准确性对减轻灾害损失具有重要意义。利用广州双偏振雷达数据与自动站雨量数据生成四维数据集,设计了 3DPoly-QPENet、3DTime-QPENet、3DEcho-QPENet三种三维卷积 QPE 模型进行比较试验。通过测试集的性能评估和典型暴雨个例的检验,得出以下结论:(1)四维数据集相较于传统的三维数据集,在捕捉降水分布特征和提升 QPE 拟合效果方面提供了更多的可能性;(2)三种三维卷积 QPE 模型呈现出与结构设计紧密相关的性能差异,其中 3DPoly-QPENet 在中等降水量区间(15~20 mm·h-1)的平均绝对误差(MAE)较另两种模型平均降低 13%;3DTime-QPENet 在高降水量事件(>50 mm·h-1)的 MAE较另两种模型平均降低 8.1%;3DEcho-QPENet全局误差均衡性最优,总体 MAE较另两种模型平均降低 20.4%;(3)三维卷积模型均系统性优于传统 Z-R 关系方法,平均 RMSE 降低 46.6%,MAE 下降48.6%,CC提升21.4%。 |
关键词: 定量降水估测 双偏振雷达 四维数据集 三维卷积 深度学习 |
DOI:10.16032/j.issn.1004-4965.2025.018 |
分类号: |
基金项目: |
|
Research on Quantitative Precipitation Estimation Using Dual-Polarization Radar Based on 3D Convolution |
ZHANG Yi1, XIE Chenhao1, CHEN Yuxin1, LI Debo1, ZHANG Yonghua2, XIONG Zili1
|
1. Guangzhou Emergency Warning Information Release Center, Guangzhou 510641, China;2.Guangdong Meteorological Service Center, Guangzhou 510641, China
|
Abstract: |
Heavy precipitation often triggers flooding disasters. Therefore, enhancing radar-based quantitative precipitation estimation(QPE) accuracy is critical for disaster mitigation. This study employs Guangzhou dual-polarization radar data and automatic weather station rainfall data to construct a four- dimensional dataset. Three three-dimensional convolutional QPE models—namely, 3DPoly-QPENet, 3DTime-QPENet, and 3DEcho-QPENet—were designed and evaluated through comparative experiments. Based on test-set performance assessments and validation with typical heavy rainfall cases, we draw the following condusions: (1) Compared to traditional three-dimensional datasets, the four-dimensional dataset better captures precipitation distribution characteristics and improves QPE fitting accuracy. (2) The three three-dimensional convolutional QPE models exhibit performance differences tied to their structural designs. Specifically, 3DPoly-QPENet reduces the mean absolute error (MAE) by an average of 13% in moderate precipitation (15-20 mm · h?1) compared to the other two models. 3DTime-QPENet achieves an average MAE reduction of 8.1% in high-intensity precipitation events (>50 mm · h ? 1). 3DEcho-QPENet shows the best global error balance, with an overall MAE reduction of 20.4% on average. (3) All three three-dimensional convolutional models surpass the traditional Z-R relationship method, reducing the root mean square error (RMSE) by an average of 46.6%, lowering MAE by 48.6%, and increasing the correlation coefficient (CC) by 21.4%. |
Key words: quantitative precipitation estimation dual-polarization radar four-dimensional dataset three- dimensional convolution deep learning |